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Department of Prosthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy “Victor Babes”,
300041 Timisoara, Romania; �orin.topala@gmail.com (F.T.); faur_andy@yahoo.com (A.F.);
ajivanescu@yahoo.com (A.J.)
* Correspondence: lucianag@umft.ro; Tel.: +40744273092

Submitted: 21 May 2023; Accepted: 28 June 2023; Published: 4 July 2023

Abstract: Background: The aim of this study was to assess the accuracy of printed interim �xed partial
dentures (i-DPSs) fabricated on 3D-printed models using di�erent printing angles. Materials and Methods:
Six printing angles were chosen, namely 90◦, 75◦, 60◦, 45◦, 30◦ and 15◦, to fabricate sixty i-DPSs, ten for each.
The measurements were performed at 100 points cervical and 100 points axial occlusal. Statistical analyses
were carried out using Med Calc software and the Kolmogorov–Smirnov and Kruskal–Wallis tests. Results:
The marginal �t ranged between 39.302 µm and 74.470 µm, with the best values for the 60◦ (39.302 µm) and
30◦ (43.287 µm) printing angles. The mean values for the internal �t were between 72.876 µm and 114.26 µm,
with the best values for the 30◦ (72.876 µm) and 60◦ (78.049 µm) printing angles. The Kruskal–Wallis test
returned a p value of p < 0.0001.
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Introduction

At present, research is showing an increase in the 3D printing digital work�ow in �xed partial denture
(FPD) manufacturing in traditional and implant prosthodontics, using di�erent materials like ceramic
nanocomposite materials, resins and laser sintering or melting metals [1–8].

For years, milling machines have been the gold standard for CAD/CAM in dentistry, especially for
the restorative �eld because of their impressive accuracy. However, their hefty price tag makes them
cost-prohibitive for many dental labs and o�ces. Available at a fraction of the cost without sacri�cing quality,
accuracy or material versatility, 3D printing can be used as a tool for restorative dentistry. Furthermore,
3D-printed FPDs have been proven to be more advantageous economically compared to subtractive
manufacturing methods and, most of the time, similar in precision [9–12].
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Additive manufacturing (AM) is comparable with subtractive manufacturing (SM) in terms of mechanical
properties, especially with polymeric materials. However, the �exural strength of AM-printed prostheses is
lower than that using conventional and SM techniques, as are the parameters of hardness and fracture load,
while the marginal accuracy is similar to that of SM and conventional techniques [13–16].

The accuracy of FPDs fabricated in a digital work�ow is in�uenced by many parameters: (1) the scanning,
which can be performed directly in the patient’s oral cavity, or the prosthodontist can take an impression, pour
a stone cast and scan the cast extra-orally [17]; (2) the software used for the digital design and also the skills of
the dentist or dental technician in using the digital tool; (3) the materials (resistance, color stability) [18,19] and
the 3D printer used for the interim FPD fabrication as well as the printing angles, which can have a signi�cant
e�ect on the fracture strength of three-unit interim �xed dental prostheses [16,20].

The aim of this study was to assess the accuracy of 3D-printed interim FPDs (i-DPDs) fabricated on 3D-printed
models using di�erent printing angles. The null hypothesis was that the angle of printing does not in�uence
the accuracy (marginal and internal �ts) of i-FPDs.

Materials and Methods

On a typodont (Frasaco, ANA4- Germany), the mandibular left �rst premolar and the left �rst molar were
prepared with a chamfer �nishing line, with an occlusal reduction of 2 mm and a 6 ◦ taper, by using a
preparation and �nishing kit (Komet-Brasseler, Lemgo, Germany). The second premolar was removed, and
the gap was closed with putty polyvinylsiloxane (Variotime, Easy Putty, Kulzer, Germany). This model was
scanned with an intraoral scanner (Medit I 700, MEDIT corp. Seongbuk-gu, Seoul Korea), and sixty models
were printed (3D Prusa SL1S 3D printer Prusa Research a.s. Czech Republic) (Figure 1).

Figure 1. Three-dimensionally printed models.
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One printed model was scanned with the same scanner, and a three-unit FPD was designed on this model
with CAD software (Exocad, Headquarters Germany exocad GmbH). The virtual space for the cement layer
was set at 50 µm.

For the 3D printing of the i-FPDs, six printing angles were chosen: 90◦,75◦, 60◦, 45◦, 30◦ and 15◦. For each
angle, 10 �xed i-FPDs were fabricated (Figure 2).

Figure 2. Three-dimensionally printed i-FPDs using di�erent printing angles.

Each �xed partial denture was cemented using glass ionomer cement (Ketac Molar Easy Mix, 3M Espe,
Germany) and pressed for 15 minutes with the same force (300 N) using a hydraulic dental press (A5701 Italy)
(Figure 3).

Figure 3. Printed i-FPDs cemented on the 3D-printed models.
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The samples were embedded in auto-polymerized acrylic resin (Duracryl Plus, Spofa, Czech Republic) in
custom-made resin boxes (Figure 4).

Figure 4. The samples embedded in auto-polymerized acrylic resin.

After the curing of the auto-polymerized acrylic resin, the samples were cut into 3 equal slices (in a buccal–oral
direction) with diamond discs and �nished (Komet-Brasseler, Lemgo, Germany).

The samples were analyzed using an optical microscope (×100), and the measurements were performed with
ImageJ software. The measurements were carried out on each external face, for each sample, at 100 points
cervical (marginal �t/marginal gap) and 100 points axial–occlusal (internal �t/internal gap) (Figure 5).

Figure 5. Microscopic images (×100) of the marginal and internal gaps.
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Statistical Analysis

Statistical software (MedCalc) was used for the statistical data analysis. The data were imported into the
software, and the numerical data were explored for normality by checking the data distribution using the
Kolmogorov–Smirnov test.

A Kruskal–Wallis nonparametric statistical test was also used to further asses the data.

Results

The results indicated that, regarding the marginal �t, the 60◦ angle group displayed the best average values
of 39.302 µm, being closely followed by the 30◦ angle group with an average value of 43.287 µm. The 45◦
angle group displayed an average value of 73.404 µm, followed by the 75◦ angle group with an average value of
66.137 µm, and the 90◦ angle group with an average value of 66.169 µm, while the 15◦ angle group displayed
the least satisfactory values with an average value of 74.470 µm (Figure 6).

Figure 6. Kruskal–Wallis test for the marginal gap.

Regarding the internal �t, the 30◦ angle group displayed an average value of 72.876 µm, the 15◦ angle group
displayed an average value of 78.801 µm, the 60◦ angle group displayed an average value of 78.049 µm, the 90◦
angle group displayed an average value of 79.122 µm, the 75◦ angle group displayed an average value of 83.431
µm, and the 45◦ angle group displayed an average value of 114.26 µm. The overall occlusal adaptation showed
close values for all the groups and generally satisfactory values, especially for the 30◦ angle group (Figure 7).
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Figure 7. Kruskal–Wallis test for the internal gap.

The statistical analysis using Med-Calc and the Kolmogorov–Smirnov test showed that the data were
nonparametric. The p value of the statistical signi�cance level was set to p = 0.05.

The Kruskal–Wallis test returned a p value of p < 0.0001, rejecting the null hypothesis and showing that the
results are of strong statistical relevance.

Discussion

The understanding of the factors involved in the additive manufacturing work�ow leads to printing success
and better outcomes for additively manufactured dental devices [21]. The printing parameters, printing
structures, slicing methods and post-processing techniques signi�cantly in�uence the surface roughness,
printing accuracy and mechanical properties of manufactured dental devices; however, the optimization of
each one may vary depending on the clinical application of the additively manufactured device.

The printing mode, resin and additive manufacturing technology used signi�cantly in�uence the
manufacturing accuracy of interim FDPs, particularly in the marginal area [22,23].

Marginal and internal gaps less than 100 µm are considered to be clinically acceptable. Some recent studies
showed that the marginal and internal �ts of FPDs manufactured using additive and subtractive methods
were clinically acceptable [7,19]. The present study came to the same conclusion, showing that most fabricated
3D-printed i-FPDs had a clinically acceptable marginal �t (Figure 6) and internal �t (Figure 7). Surprisingly,
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the only group with a clinically unacceptable internal gap was the 45◦ angle group, which displayed an average
value of 114.26 µm (internal �t).

Most researchers recommend the 45◦ angle as the best in terms of accuracy [23,24], while others recommend
the more vertical (90◦) printing positions [25]. One study concluded that the �t of printed metal FDPs was
a�ected by the build orientation but remained clinically acceptable when using 0◦, 30◦ and 45◦ printing
angles [26].

In the present study, the results of the marginal gap showed that the best results were obtained when using the
60◦ printing angle (39.302 µm), which was closely followed by the 90◦ (66.169 µm) printing angle; therefore,
this study is completely in agreement with the 90◦ recommendation. In all the groups, the internal gap was
clinically acceptable (<100 µm), except for the 45◦ angle group; thus, the present study does not agree with
the 45◦ printing angle.

In the present study, the best result (72.876 µm internal gap) was obtained when the 30◦ printing angle
was used.

Although this study has its limits, like the use of a single resin and a single 3D printer, the null hypothesis was
rejected. The accuracy (marginal and internal �ts) was in�uenced by the printing angle.

In vitro studies have limited clinical value; therefore, to obtain stronger scienti�c evidence, clinical studies
regarding the accuracy and mechanical and esthetic behavior of printed i-FPDs are recommended.

Conclusions

Within the limits of the present study, the best results regarding the marginal and internal �ts of a printed
interim �xed partial denture were obtained when the 30◦ and 60◦ printing angles were used.
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