POSSIBILITIES TO MODULATE THE IMMUNE RESPONSE DURING INFECTIONS

Emilia Nicoara, Alexandru Crisan

ABSTRACT
Immunomodulating drugs are important tools in the treatment of infectious diseases, especially hepatitis. The authors present different classes of immunomodulators that are currently in use. After the era of antibiotherapy and of augmentation of host defense through immunizations, the time has come for immunomodulation substances to be reevaluated. Because multidrug antibiotic resistance has turned into a major medical problem, intensive research has been done in the field of immunomodulation.

Key Words: host defense, immunomodulators, infectious diseases

During immune response in infectious diseases a considerable number of humoral and cellular factors are released. If they are released in inadequate quantities, the immune response may be either insufficient or in excess, thus leading to alterations of host structure. Nowadays, there are several therapeutic means available to modify the immune response.

Bajcetic presents three approaches that are currently used to modulate the immune response:

- alteration of the thresholds of immune activation. This way, the immune response can be weakened or strengthened (blockade of co-stimulatory factors; the antagonization of inflammatory cytokines or protective cytokines; inhibition of signaling cascades by small molecules).

- modulation of antigen-specific responses (induction of regulatory cells by intravenous, subcutaneous or oral delivery of antigen; alteration in peptide ligands; formation of large assemblies from peptide and major histocompatibility complex molecules; induction of B-cells tolerance; immune deviation from type 1 to type 2 helper T cells).

- sparing of target organs (complement and cytokines antagonization; use of anti-inflammatory agents; inhibition of matrix metalloproteases and of nitric oxide synthase).

Interference with co-stimulation and signaling chemokines and other molecules critical to immune activation is designed to restore homeostasis in the immune system and dampen the autoimmune response.

Immunomodulatory therapy represents an important field in the treatment of infectious diseases and is more actual every day. According to Fauci’s definition, an immunomodulator is a biological or non-biological substance that directly influences a specific immune function or modifies one or more components of the immunoregulatory network to achieve an indirect effect on a specific immune function. Animal studies have shown that immunomodulators are substances of varied origin: cytokines, pharmaceuticals, microbial products, and traditional medicinal plants.

It has several years now since the immunomodulators have classified depending on their origin in endogenous, exogenous, and synthetic. Immunomodulators have been used to stimulate the defense mechanisms for prophylaxis and treatment of viral, bacteria, parasitic, and fungal diseases.

Nowadays, the field of clinical immunomodulation is
Interferons are glycoproteins secreted by infected cells, cytokine IFN-gamma, in antigen- and mitogen-stimulated mononuclear cells from the peripheral blood. It enhances the cellular immune response and inhibits angiogenesis. It is indicated in the treatment of HIV infection (wasting syndrome, Kaposi's sarcoma), cancer, aphthous ulcerative stomatitis, idiopathic esophagus ulcers, leprosy and tuberculosis. 

Bacterial-derived immunomodulators may be used as prophylactic or therapeutic agents in infectious diseases.

BCG stimulates macrophages, T and B lymphocytes, stimulates NK cell function and augments interleukin 1 production. BCG has been successfully used in the past 20 years in non-specific activation of the immune system in some forms of cancer (urinary bladder) and in infectious diseases. Mycobacterial heat shock proteins and toxins of Staphylococcus aureus induce polyclonal activation of certain T cell subsets.

Other bacteria-derived compounds, such as Bronhvaxom, Urovaxom, Luivac, IRS-19, Aerodin, Polidin, Cantastim, Biostim induce lymphocyte proliferation in the mucosal-associated lymphoid tissue (MALT), followed by their migration in tonsils and lungs. They also increase synthesis and release of IL5, IL6 that initiates Th2 immune response. These bacterial extracts stimulate interferon production in respiratory epithelium, enhancing Th1 immune response, increase the synthesis of secretory IgA and activate macrophages and NK cells. Indications for these bacteria-derived agents are represented by chronic respiratory and urinary infections, in association with antibiotics.

Since the production of cytokines is modulated by several biological agents such as hormones, prostaglandins and drugs, these may also serve as therapeutic targets for immunomodulation. Consequently, stress or hormones such as cortisol, tymic extracts, melatonin may act as immunomodulatory agents. Thymus extracts may be of use in viral B hepatitis, herpes zoster, herpes labialis and chronic Trichophyton rubrum infections.

Corticotherapy is frequently used as potent suppressor of the immune response with marked anti-inflammatory activity. Corticosteroids are indicated in Hemophilus influenzae meningitis, tuberculous meningitis and pericarditis, typhoid fever with shock and autoimmune chronic active hepatitis.

Corticosteroids have disappointing results in septic shock and acute respiratory distress syndrome.

In the group of immunomodulatory cytokines, best characterized in terms of efficiency, safety and mechanisms of action are the interferons. Interferons are glycoproteins secreted by infected cells, macrophages, lymphocytes and act as a protecting
factor against cytophilic pathogens. They have antiviral activity (inhibit the translation of viral RNAs into viral protein), inhibit the proliferation of malignant cells, facilitate the phagocytic functions of macrophages, increase the number of NK cells and increase expression of class I HLA antigens.3

There are different types of interferons: type I: IFN a, with 12 distinct proteins; IFN b- a single species; IFN w- a single species; IFN k; IFN t; and type II: IFN g.24

Type I IFN have immunomodulatory and antiviral activity, while type II IFN has an antiproliferative effect. Specific cell receptors exist for the two types of IFN. IFN a and IFN b represent a link between immune memory and chronic inflammation. The majority of expanded T cell generated during an immune response is cleared by apoptosis. Prevention of death in some activated T cells enables the persistence of a memory T-cell pool. There are observations that IFN a and IFN b inhibit activated T-cell apoptosis. Although enables memory T cells to persist without antigen, excessive IFN-a or IFN-g secretion might lead to chronic inflammation.25

Interferons have several mechanisms of action. Interferons bind to specific cell-surface receptors and stimulate the cellular synthesis of specific gene products within 15 minutes: 2’5’ oligo-adenylate synthetase gene, HLA Class I genes, protein kinases, b-2 microglobulin. These gene products enhance antigen presentation by the target cell and activate antiviral pathways within the cell. Suppression of viral replication and elimination of infected cells by the immune system are eventually achieved.26

The available forms for clinical use are: recombinant interferon a: 2a (ROFERON A) or 2b (INTRON A) usually administered associated with antiviral drugs (lamivudine or ribavirin); natural interferon a-n3 (ALFERON N); bioengineered interferon alfacon-1 (INFERGEN); pegylated interferon: PEG (40 kD) IFN-a-2a (PEGASYS) and PEG (12 kD) IFN-a-2b (PEG-Intron).27

Because of their multiple effects interferons are contraindicated in severe cardiac disease, renal failure, decompensated liver disease, epilepsy, severe neurological impairment, autoimmune liver disease, uncontrolled thyroid disease, and severe psychiatric disorders, particularly depression.28

The most common side effects of interferon are fever, lethargy, insomnia, diarrhea, occurring early in the course of treatment in most patients. Late side effects of interferon therapy are: depression, bone marrow suppression, thyroiditis, hypothyroidism, hyperthyroidism, and impotence, with a non-negligible impact on patients’ quality of life.29

Interferons are widely used in chronic infections with hepatitis B, D and C viruses, attempting to suppress the viral replication, halt the progression of liver disease and to render the patient noninfectious.

In chronic B hepatitis, indications for beginning interferon therapy are: positive HBs and HBe antigens, HBV-DNA, and elevated ALT. If signs of viral replications are absent (positive HBs with negative HBe antigen, undetectable HBV-DNA, and normal ALT), or in case of advanced liver disease or liver failure, or in immunodeficit states (HIV infection, renal failure, and organ transplantation) interferon therapy is contraindicated.23

High response rate to IFN treatment in chronic HBV infection is obtained if active hepatitis and low serum HBV-DNA levels are present. Inactive disease, high levels of serum HBV-DNA and immunosuppression determine poor response rate. Interferons in higher doses and for longer periods than for HBV infection are used in the therapy of chronic HDV infection. Clearance of HBs antigen and cessation of HDV replication were obtained in 20% of cases and remission without loss of HBs antigen in 36% of cases. The prognostic factors for sustained viral response in chronic HCV infection are: genotype non-1, low viral load, age under 40 years, fibrosis stage, HAI higher than 10, ALT higher than three times ULN, body weight, gender. Sustained response to interferon in chronic C hepatitis is expressed by: normalization of liver enzyme levels, loss of serum HCV-RNA, improvement of inflammatory scores, and regression of fibrosis.

Pegylated interferon is the newest pharmaceutical form of interferon that proved beneficial in patients less responsive to other treatments, particularly those with cirrhosis and HCV genotype 1.25

Interferon therapy in association with ribavirin seems to be more effective than monotherapy.

Interferon a is also used in human papillomavirus infections: condyloma acuminatum (intralesional 1-5 million units three times a week for three weeks) and recurrent respiratory papillomatosis (systemically administered).30

Recombinant human interferon g is indicated in chronic granulomatous disease, visceral leishmaniasis, lepromatous leprosy, and MAC chronic disseminated infections in AIDS patients.31

In addition to interferons the following cytokines are used in clinical practice:

• IL-1 is used as a non-specific adjuvant therapy in bacterial infections trying to dampen the augmentation of the inflammatory response in sepsis.32
• IL-2 presents as recombinant human IL-2 aldlesleukin (PROLEUKIN), and is utilized in the
therapy of disseminated cutaneous leishmaniasis (intraleisonal) and leprosy (intradermally) where it enhances cell-mediated immunity and decreases the number of organisms in lesions, in HIV infection, raising the number of LT CD4 positive cells, and also in various malignancies.35

- IL-10 exerts an intense anti-inflammatory effect, through the inhibition of proinflammatory cytokines. IL-10 is synthesized by TH2-type lymphocytes and upregulates humoral immune responses and attenuates cell-mediated immune reactions.34
- IL-12 plays a critical role in defense against infection by intracellular organisms. It is used as adjuvant therapy in mycobacterium infections, leishmanial infections, and in HIV infection.35

Another way to modulate the immune response via cytokines is by blocking their action through monoclonal antibodies against TNFa, TNFa receptors and against endotoxines, soluble receptors for IL-1, TNFa, IL-1 receptor antagonist, PAD antagonists, bradikinine inhibitors, inhibitors of iNos. Previous studies show the therapeutic effects of cytokine blockers in septic shock.36

Certain immunoglobulins are used for passive immunization against various pathogens (hepatitis A virus, varicella-zoster immunoglobulin, tetanus, rabies). Intravenous immunoglobulins (IVIG) are important immunomodulators by several mechanisms: Fc receptors blockade, antiidiotype antibodies, anti-Fab2 antibodies antibodies against cytokines or complement factors.38 Immunoglobulins are used intravenously in primary immunoglobulin deficiencies, HIV infections, after bone marrow transplantation, GVH disease, cytomegalovirus interstitial pneumonia, gram-negative septicemia, premature infants and Kawasaki syndrome.38

As a conclusion, infectious diseases represents one of the most important causes of mortality despite the progress made by the antibiotherapy, mainly due to increasing antibiotic resistance. Augmentation of host defense through immunization and passive immunization can be further enhanced by the use of immunomodulating substances. Nowadays, it is more obvious that the time has come for a reappraisal of these immunomodulators discussed here demonstrated the potential of these agents to stimulate host-defense mechanisms for prophylaxis and treatment of various infectious diseases.40 Recent studies have led to the development of new strategies for immunomodulation such as DNA and oligonucleotides vaccination, use of cytokines, Further research is needed to confirm the efficacy and safety of these new therapies.

REFERENCES

alpha-2b: pharmacokinetics, pharmacodynamics, safety, and
preliminary efficacy data. Hepatitis C intervention Therapy
29. Bernstein D.E. Effect of therapy on Quality of Life. Newly
emerging Dala on Pegylated interferons; AASLD, Dallas, 2000.
30. Hengge UR, Casini M. Topical immunomodulators for the treatment
of external genital warts, cutaneous warts and molluscum
31. Murray HW. Interferon-gamma and host antimicrobial defense:
459-67.
32. Choy EHS, Panayi GS. Cytokine pathways and joint inflammation
33. Opal SM, Wherry JC, Grint P. Interleukin 10; potential benefits
and possible risk on clinical infectious diseases. Clin Infect Dis
34. Bellomo R. The cytokine network in the critically ill. Anaesth
35. Terness P, Navolan D, Dufer C, et al. Immunosuppressive anti-
immunoglobulin autoantibodies: specificity, gene structure and
function in health and disease. Cell Mol Biol (Noisy-le-grand)
36. Simon HU, Späth PJ. IVIG - mechanisms of action. Allergy 2003;
58(7):543-52.
37. Mounthon L, Guilleyn L. Intravenous immunoglobulins;
activity of commercial intravenous immunoglobulin preparations-
a potential role for adjuvant intravenous immunoglobulin therapy
immunointervention in autoimmune diseases. Immunol Today
40. Uhlmann E, Vollmer J. Recent advances in the development of
immunomodulatory oligonucleotides. Curr Opin Drug Discov
Devel 2003;6(4):204-17.
41. Wynn TA. Development of an antipathology vaccine for
42. Liles WC. Immunomodulatory approaches to augment phagocyte-
mediated host defence for treatment of infectious diseases. Semin
Respir Infect 2001;16(1):11-7.
43. Wynn TA, Reynolds A, James S, et al. IL-12 enhances vaccine-
induced immunity to schistosomes by augmenting both humoral
4068-78.