THE EFFECTS OF MEDICAL THERAPY FOR BENIGN PROSTATIC HYPERPLASIA ON THE SEXUAL FUNCTION OF THE PATIENTS

Florin Stiuca-Seracu¹, Viorel Bucuras², Razvan Bardan²

INTRODUCTION

The interaction between the low urinary tract symptoms (LUTS) and erectile dysfunction (ED) has been extensively studied in the last twenty years, because both conditions have a high associated incidence in elderly males, with significant impact on their quality of life.¹

¹ Municipal Policlinic, Arad. ² Department of Urology, Victor Babes University of Medicine and Pharmacy, Timisoara

Correspondence to:
Florin Stiuca-Seracu, Municipal Policlinic, 45 Revolutiei Blvd., Arad, Tel. +40-724-292315
Email: florinstiuca@yahoo.com

Received for publication: Sep 26, 2008. Revised: Jan. 12, 2009.
There are several theories that try to establish pathophysiological links between the two diseases, opening new common therapeutic opportunities. Additionally, the urologists should know as much as possible about this association, because the existing drugs used for the therapy of LUTS/benign prostate hyperplasia (BPH) might have adverse effects at the sexual function level.

Selective alpha-receptors antagonists, used currently for BPH therapy, block also the action of norepinephrine at the level of alpha-1 receptors of the cavernous smooth muscle cells. The normally released norepinephrine produces smooth muscle contraction and penile detumescence, so the alpha blockers might have a pro-erectile effect.

On the other hand, during the studies realized using 5-alpha-reductase inhibitors for BPH therapy, several sexual side effects were observed, in different proportions, ranging from decreased sexual desire and ejaculation disorders to complete impotence.

OBJECTIVE

The aim of our study was to evaluate the sexual function of a group of patients with BPH, treated with alpha-blockers and 5-alpha-reductase inhibitors, at baseline and after 12 months of therapy.

MATERIAL AND METHODS

We have included in our initial evaluation a number of 385 male patients with benign prostatic hyperplasia with indication for medical treatment, in an outpatient setting, which accepted to take the medication for one year. The inclusion criteria were: age over 50 years, moderate to severe low urinary tract symptoms (LUTS) with duration of at least six months, prostate volume over 30 cm3. Among the most significant exclusion criteria we can cite: previous low urinary tract surgery, major cardiovascular or systemic diseases, diabetes mellitus, bladder stones or recent history of urinary tract infections.

Following this evaluation process, a number of 337 patients were selected for the one year clinical study, after signing an informed consent form, according to the Good Clinical Practice (GCP) regulations. The baseline and one year assessments included: the International Prostate Symptom Score (IPSS), the ultrasonographic measurement of prostate volume, urinary peak flow rate (Qmax), the total Prostatic Specific Antigen (PSA) value, and the Sexual Health Inventory for Men (SHIM), containing five questions.

A number of 215 patients (with prostate volumes lower than 40 cm3) were treated with alpha-blockers, being randomized into two groups: 110 have received alfuzosin (10 mg extended release tablets) and 105 were prescribed tamsulosin (0.4 mg oral controlled absorption tablets). The remaining 122 patients, with prostate volumes higher than 40 cm3, have been treated with dutasteride (0.5 mg capsules), a novel 5-alpha-reductase inhibitor.

Statistical analysis

The obtained data was analyzed using the NCSS 2007 software application for Windows; mean values and standard deviations were calculated and various correlations between the parameters, using the paired two-sample t-Test, were analyzed.

RESULTS

The age distribution in the study groups was relatively homogenous for the two alpha-blocker groups, but different from the dutasteride group. The explanation for this difference resides from the direct proportionality between the prostate volumes and the patients’ age (a significant number of the patients with prostates larger than 40 cm3, treated with dutasteride were over 70 years old). (Fig. 1)

Therapy effects on benign prostatic hyperplasia

As we can observe from Table 1, therapy with the two alpha-blockers and the 5-alpha-reductase inhibitor had favorable effects on all parameters of BPH, as expected, taking into account the fact that our study was designed as open label, without a placebo arm, using already known drugs, indicated for BPH.

We have also observed the following differences between the study groups:

- The patients from the tamsulosin and dutasteride groups had a similar decrease of the IPSS, with a slight advantage for dutasteride, while the patients treated with alfuzosin had a lower IPSS decrease; we may also observe that this group of patients had the initial IPSS value with at least two points lower than the other small group of patients with prostate volumes higher than 40 cm3, treated with dutasteride were over 70 years old).

Table 1. Distribution of patients by age groups.

<table>
<thead>
<tr>
<th>Age group (years)</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 59</td>
<td>34</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>60 - 69</td>
<td>51</td>
<td>51</td>
<td>58</td>
</tr>
<tr>
<td>70 - 79</td>
<td>16</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>80+</td>
<td>2</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

Figure 1. The age distribution of the three study groups.
group (this was due to randomization and it was not intended), so the final IPSS score was also the lowest.

- The patients from the two groups receiving alpha-blockers (A and B) had a similar increase of the maximum urinary flow (1.89 vs. 2.19 ml/s), which is consistent with other studies, while the patients treated with dutasteride had a slightly bigger increase (3 ml/s); despite this difference, we must take into account that the initial average Qmax was with 1 ml/s lower than in the other two groups, so the final Qmax was around 11 ml/s in all types of therapy. (Fig. 2)

- In the dutasteride group the average reduction of the prostate volume was 8.81 cm3, while the average PSA value was reduced with 45.6%, values which are also consistent with previous studies.

Figure 2. Variations of IPSS score and maximum urinary flow.

Evolution of sexual function

Let’s now examine the evolution of the SHIM score in the three study groups.

- Group A (of patients treated with alfuzosin) had a significant improvement, of 1.78 points; the improvement of sexual function was constant in all patients, regardless of the initial erectile function (ranging from normal sexual function to severe erectile dysfunction), which makes alfuzosin a first intention drug, especially for patients having BPH associated with ED.

- Group B (of patients treated with tamsulosin) had a modest improvement of their sexual function, of 0.24 points (p = 0.03). From the data already known from the literature, this could be the consequence of ejaculatory problems induced by tamsulosin (i.e., retrograde ejaculation). Unfortunately, the SHIM questionnaire is not assessing ejaculatory function, so we are not able to evaluate the impact of retrograde ejaculation on the overall sexual function of the patients from this group. We intend to realize further studies with tamsulosin (placebo-controlled, if possible, to increase the level of clinical significance), using other questionnaires, which should assess the ejaculatory dysfunction too.

Table 1. Effects of the therapy on BPH parameters.

<table>
<thead>
<tr>
<th></th>
<th>Initial IPSS (± SD)</th>
<th>Final IPSS (± SD)</th>
<th>Initial Qmax (± SD)</th>
<th>Final Qmax (± SD)</th>
<th>Initial prostate volume (± SD)</th>
<th>Final prostate volume (± SD)</th>
<th>Initial PSA (± SD)</th>
<th>Final PSA (± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (Alfuzosin)</td>
<td>15.87 ± 4.91</td>
<td>12.3 ± 4.96</td>
<td>9.07 ± 1.59</td>
<td>10.96 ± 1.68</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Group B (Tamsulosin)</td>
<td>19.14 ± 6.75</td>
<td>14.38 ± 6.81</td>
<td>9.09 ± 1.79</td>
<td>11.28 ± 1.96</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Group C (Dutasteride)</td>
<td>19.87 ± 5.62</td>
<td>14.15 ± 5.56</td>
<td>8.37 ± 2.03</td>
<td>11.37 ± 2.05</td>
<td>52.34 ± 9.28</td>
<td>43.53 ± 6.13</td>
<td>2.39 ± 1.05</td>
<td>1.30 ± 0.56</td>
</tr>
</tbody>
</table>

Table 2. The evolution of the SHIM score in the three study groups.

<table>
<thead>
<tr>
<th>Group Initial SHIM (± SD)</th>
<th>Final SHIM (± SD)</th>
<th>SHIM variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (alfuzosin)</td>
<td>12.77 ± 4.13</td>
<td>14.55 ± 3.52</td>
</tr>
<tr>
<td>Group B (tamsulosin)</td>
<td>13.30 ± 5.01</td>
<td>13.54 ± 5.07</td>
</tr>
<tr>
<td>Group C (dutasteride)</td>
<td>13.96 ± 4.79</td>
<td>13.84 ± 5.64</td>
</tr>
</tbody>
</table>

Group C (patients treated with dutasteride) have an overall slight decrease of their sexual function, as measured by the SHIM questionnaire (0.12 points, p = 0.13). These results indicate that dutasteride has a negative impact, but their statistical significance is very low, so we have tried to further stratify the patient group: we divided it into two subgroups, one with initial normal sexual function, or mild erectile dysfunction (SHIM score of 16 – 25) and the other with initial moderate, or severe erectile dysfunction (SHIM score of 5 - 15). The results are presented in Table 3.

Table 3. Risk stratification of the patients treated with dutasteride.

<table>
<thead>
<tr>
<th>Group Initial SHIM (± SD)</th>
<th>Final SHIM (± SD)</th>
<th>SHIM variation</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No initial ED or mild ED</td>
<td>19.25 ± 2.96</td>
<td>20.1 ± 3.18</td>
<td>+0.85</td>
</tr>
<tr>
<td>Initial moderate or severe ED</td>
<td>11.38 ± 3.09</td>
<td>10.78 ± 3.73</td>
<td>-0.6</td>
</tr>
</tbody>
</table>
As we can observe, the patients with initial moderate to severe sexual function impairment had a SHIM score increase of 0.6 points, more statistically significant than the whole group (p < 0.006). In the mean time, patients with initially mild erectile dysfunction, or with normal sexual function, even had a decrease of the SHIM score, with 0.85 points, finding that represents quite a surprise; its statistical significance, confirmed by the paired two-sample t-Test (p < 0.002), raises an attractive new question: do patients with an initial SHIM score over 16 benefit (in sexual function parameters) from the therapy with dutasteride?

This possible risk stratification should be undoubtedly explored further, in a prospective randomized, double blind clinical study, using the full IIEF questionnaire.

CONCLUSIONS

Therapy with alpha-blockers has a positive effect on the overall sexual function, acting at the level of alpha-1-receptors, both in the prostate and in the cavernous smooth muscle cells.

A new risk stratification of patients receiving 5-alpha reductase inhibitors might emerge, the patients with mild erectile dysfunction or normal sexual function having the chance for improvement, while the patients with moderate to severe erectile dysfunction might expect a worsening of their sexual life.

REFERENCES